A 99 PHYS. II

ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES MINES DE NANCY, DES TÉLÉCOMMUNICATIONS DE BRETAGNE, ÉCOLE POLYTECHNIQUE (FILIÈRE TSI)

CONCOURS D'ADMISSION 1999

SECONDE ÉPREUVE DE PHYSIQUE

Filières PC

(Durée de l'épreuve : 4 heures)

Sujet mis à disposition du concours ENTPE

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :

PHYSIQUE II -PC

L'énoncé de cette épreuve, particulière aux candidats de la filière PC, comporte 5 pages. En fin d'énoncé, on rappelle les notations utilisées dans ce problème

- Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.
- Tout résultat fourni dans l'énoncé peut être utilisé pour les questions ultérieures, même s'il n'a pas été démontré.
- Il ne faudra pas hésiter à formuler les commentaires (incluant des considérations numériques) qui vous sembleront pertinents, même lorsque l'énoncé ne le demande pas explicitement. Le barème tiendra compte de ces initiatives ainsi que des qualités de rédaction de la copie.

Notations : vecteur : \mathbf{V} (gras) ; norme du vecteur \mathbf{V} : V (italique) ; vecteur unitaire : $\hat{\mathbf{v}}$.

Cuisson d'un soufflé

Les trois parties de ce problème sont largement indépendantes entre elles.

On se propose d'étudier la diffusion de l'énergie thermique au sein d'une plaque homogène d'épaisseur d, placée dans un four aux parois métalliques maintenues à la température T_e . La figure 1 précise la configuration et les notations. Les plans Π_1 et Π_2 sont de très grandes dimensions devant d. La température initiale de la plaque, notée T_i , est uniforme. Jusqu'à la question 7, les seuls transferts envisagés sont les transferts thermiques.

A la date t, un point de la plaque est à la température T. On appellera T_1 la température de la plaque à la surface Π_1 . En dépit des discontinuités du milieu (interfaces paroi-plaque et plaque-air), la température est supposée être une fonction deux fois dérivable de l'espace.

A) Équilibre de l'ensemble.

☐ 1 – Comment justifier le modèle où,	en régime stationnaire,	la température	$T_{\rm p}$ dans
la plaque et T _o dans l'air sont uniformes			

	1 2 – 1	Donner	le non	ı de l	a transi	formatio	n décrivan	t l'évol	ution o	de 1	'ensemble	{pla	ique
et air]	}.												

2 CUISSON D'UN SOUFFLE

□ 3 – Expliquer pourquoi la pression de l'air dans le four ne peut pas être constante au cours de l'évolution et en déduire les hypothèses de l'énoncé qui vous paraissent, en conséquence, les plus suspectes.

 \Box 4 – Quelles sont les relations entre températures T_e , T_p et T_a à l'équilibre ?

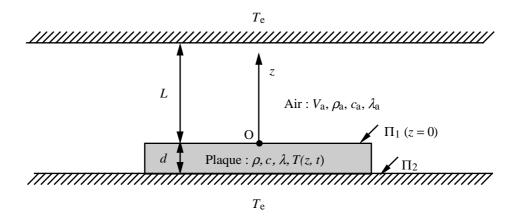


Fig. 1: Plaque dans un four

Le matériau de la plaque a une masse volumique ρ , une capacité thermique massique c et une conductivité thermique λ (λ > 0). Ces trois grandeurs sont constantes. L'air au dessus de la plaque occupe le volume V_a constant ; sa masse volumique est ρ_a , sa capacité thermique massique est c_a et sa conductivité thermique est λ_a . On considérera ρ_a , c_a et λ_a comme constantes. Le plan Ω_2 est en contact avec la paroi inférieure du four. Le plan Ω_1 est à la distance L de la paroi supérieure du four.

Établissement de la température dans la plaque.

- \Box 5 Justifier d'après les hypothèses que $\theta = T$ T_e puisse ne dépendre que de z et de t. On supposera qu'il en est effectivement ainsi.
 - \Box **6** Établir l'équation différentielle vérifiée par θ :

$$\frac{\partial \theta}{\partial t} - a^2 \Delta \theta = 0.$$

Donner l'expression de a en fonction de ρ , c et λ

- \Box 7 On cherche une solution de cette équation de la forme $\theta = f(z).g(t)$. Établir les équations différentielles vérifiées respectivement par f(z) et g(t). On introduira une constante supplémentaire ν , homogène à l'inverse d'un temps.
- □ 8 Déterminer le signe de v de telle manière que $\lim_{t\to\infty} g(t) = 0$. Posant $v = -k^2$, donner l'expression de g(t). Pourquoi rejeter l'autre solution ?
- \Box 9 Déterminer l'expression de θ sous la forme : $\theta_k = (A_k \cos \alpha z + B_k \sin \alpha z) \exp \alpha' t$, qui sera provisoirement acceptée. Donner l'expression de α et celle de α' en fonction de a et k. Les constantes A_k et B_k seront déterminées par la suite. Déterminer l'expression des flux surfaciques de puissance $\mathbf{J}_{\mathbf{Q}}(\Pi_1)$ à travers Π_1 et $\mathbf{J}_{\mathbf{Q}}(\Pi_2)$ à travers Π_2 (α et α' ayant été exprimés en fonction de a et k).

B) Étude des conditions aux limites imposées aux niveaux de Π_1 et Π_2 .

On s'intéresse d'abord au plan Π_1 .

□ 10 – Première situation : on néglige tout mouvement de l'air au dessus de la plaque. Écrire l'équation différentielle vérifiée par la température $T_a(z, t)$; déterminer $T_a(z, t)$ en supposant que l'évolution de la température de la plaque au niveau du plan Π_1 est suffisamment lente pour que l'on puisse envisager de négliger le terme dépendant du temps dans l'équation locale pour T_a . En déduire le flux de puissance $\mathbf{J}_{\mathbf{Q}_1}(\Pi_1)$ à travers Π_1 en fonction de λ_a , L, T_e et T_1 .

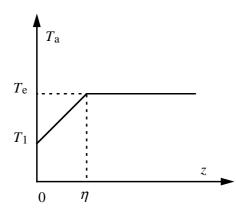


Fig. 2 : profil de température de l'air Π_1 en fonction de λ_a , η , T_e et T_1 . dans le cas de brassage forcé ; le plan Π_1 correspond à z = 0.

 \Box 11 – Seconde situation : l'air est brassé (brassage forcé) au dessus de la plaque. La distribution de la température Ta est alors modélisée comme indiqué à la fig. 2; η est de l'ordre de quelques dixièmes de millimètre. On considère que le transfert thermique est uniquement conductif au voisinage de Π_1 (ce qui revient à considérer que la vitesse de l'air est très faible sur l'épaisseur η). Déterminer $T_a(z, t)$ en fonction de T_e , T_1 et η , puis le flux de puissance $\mathbf{J}_{\mathbf{Q}_2}(\Pi_1)$ à travers

$$\square$$
 12 – Comparer $\mathbf{J}_{\mathbf{Q}_1}(\Pi_1)$ à $\mathbf{J}_{\mathbf{Q}_2}(\Pi_1)$.

- Quel est l'intérêt d'un four disposant d'un ventilateur pour brasser l'air ?
- Pour refroidir un biberon, a-t-on intérêt à le plonger dans l'eau froide ou à le mettre dans un courant d'eau froide?
- Pourquoi est-il thermodynamiquement convenable de souffler sur sa cuillère de soupe trop chaude pour la refroidir (remarquer que cette situation fait intervenir un changement d'état)?

Le flux de puissance à travers la partie supérieure de la plaque (plan Π_1), comme on l'a montré dans les deux situations envisagées aux questions 10, 11 et 12, sera écrit sous la forme générale $\mathbf{J}_{\mathbf{Q}\mathbf{a}} = -h(T_e - T_1)\hat{\mathbf{z}}$ avec h > 0 (l'indice « a » se rapporte à l'air).

- \square 13 Quel est le sens physique de l'égalité entre $\mathbf{J}_{\mathbf{Q}}(\Pi_1)$ et $\mathbf{J}_{\mathbf{Qa}}$? en déduire la relation entre A_k et B_k et donner l'expression de θ_k en fonction de A_k seul (et bien sûr de a, k et λ).
- \square 14 Déduire de la condition imposée à T au niveau du plan Π_2 la relation entre k, d, $a, \lambda \text{ et } h.$

□ 15 – Montrer graphiquement que cette relation, vue comme une équation pour k, admet une infinité de solutions. À chaque valeur k_i de k, on associe la solution θ_i (exprimée en fonction de k_i et de A_i , valeur de A pour k_i). On admettra que la solution générale s'écrit

$$\theta(z,t) = \sum_{i=1}^{\infty} \theta_i(z,t).$$

Applications numériques

4

$$d = 5.0 \text{ cm}$$
 $\rho = 200 \text{ kg.m}^{-3}$ $c = 240 \text{ J.kg}^{-1}.\text{K}^{-1}$
 $T_{\rm e} = 180 \,^{\circ}\text{C}$ $T_{\rm i} = 20 \,^{\circ}\text{C}$ $\lambda = 1,00.10^{-1} \text{ W.m}^{-1}.\text{K}^{-1}$.

On envisagera deux cas : air non brassé, $h^{\rm NB} = 5,00~{\rm W.m^{-2}.K^{-1}}.$ air avec brassage forcé, $h^{\rm B} = 300~{\rm W.m^{-2}.K^{-1}}.$

Les questions 17 à 24 seront traitées dans les deux cas.

- \Box **16** Calculer *a*.
- \square 17 Estimer rapidement les deux premières valeurs non nulles de k; les valeurs exactes sont :

$$k_1^{NB} = 0.0685 \text{ s}^{-\frac{1}{2}}, \quad k_2^{NB} = 0.149 \text{ s}^{-\frac{1}{2}}, \quad k_1^{NB} = 0.0899 \text{ s}^{-\frac{1}{2}} \text{ et } k_1^{NB} = 0.1805 \text{ s}^{-\frac{1}{2}}$$

- □ 18 Déterminer les dates $t_1^{\text{NB, B}}$ à partir desquelles, respectivement, $r = \frac{\exp(-k_1^2 t)}{\exp(-k_2^2 t)}$ devient supérieur à 10. On considérera que pour $t > t_1$, seul le terme en k_1 est à considérer.
 - □ 19 Déterminer la date t_2 à partir de laquelle le terme $\exp(-k_1^2 t)$ est inférieur à 0,1.
 - \square 20 En déduire l'expression de θ valable à partir de t_1 (en fonction de A_1).
- □ 21 Pour t' = 300 s, les températures au milieu de la plaque sont, respectivement, $T^{\text{NB}} = 144$ °C et $T^{\text{B}} = 166$ °C. Déterminer complètement l'expression numérique de T(z, t) pour $t > t_1$.
- \Box 22 Calculer les cotes z_m des minima de T, calculer les dates t'' auxquelles la température minimale est T_m =100°C.
- \square 23 Donner l'allure, en plaçant quelques points remarquables, de la répartition de T en fonction de z pour t=150 s.
- \square 24– Représenter l'évolution de T_1 en fonction du temps, placer quelques points pour $t > t_1$.

C) Théorie de la cuisson d'un soufflé au fromage

On veut essayer d'utiliser certains des résultats précédents pour optimiser la cuisson d'un soufflé au fromage, préparation culinaire à base de blanc d'œuf battus en neige. On incorpore à ces derniers un mélange constitué d'une sauce épaisse au fromage (béchamel) et de jaunes d'œuf. Le volume d'un blanc d'œuf standard est environ 30 cm³; lorsqu'il est agité (battu en neige) le blanc d'œuf piège des bulles d'air et son volume devient environ 300 cm³. La préparation est placée dans un récipient cylindrique et mise au four à 180°C. Des mesures effectuées au cours de la cuisson montrent que la pression dans la préparation varie très peu. La cuisson est terminée quand la température au centre de la préparation est de l'ordre de 80°C. Les températures à la surface et au fond sont alors légèrement supérieures à 100°C; le volume initial a triplé.

Hypothèses et données : la diffusion des gaz se fait plus rapidement que la cuisson (c'est-à-dire que l'augmentation de la viscosité). On ne tiendra pas compte de la capillarité, des contraintes tangentielles en surface et sur les bords du soufflé (déchirures, débordements). La densité moyenne approximative de la préparation culinaire est $d_m \approx 1$, la constante des gaz parfaits est $R \approx 8.314 \, \text{J.K}^{-1}.\text{mol}^{-1}$ et la masse molaire de l'eau est $M_{\text{H},O} \approx 18 \, \text{g.mol}^{-1}$.

- □ 25 Peut-on expliquer l'augmentation de volume par la dilatation de l'air (assimilé au gaz parfait) contenue dans le blanc d'œuf ? si non, quel autre phénomène faut-il envisager ? où se produit-il principalement ?
 - □ 26 Quelle est la masse d'eau minimale vaporisée pour un litre de préparation ?
- □ 27 On constate que la préparation perd 10% de sa masse au cours de la cuisson. Pour quelle raison principalement ? Évaluer cette masse ; comparer avec le résultat trouvé en 26. Conclure.
- □ 28 On veut que le soufflé soit très gonflé tout en ne se desséchant pas à l'intérieur. On envisage donc d'obtenir très rapidement la formation d'une croûte à la surface rendant celle-ci imperméable à la vapeur d'eau, évitant ainsi la perte d'eau. A-t-on intérêt à utiliser un four à air pulsé ? motiver la réponse. Que pensez-vous de la solution consistant à utiliser un chalumeau pour obtenir cette croûte avant la cuisson ? comment régler la cuisson après cette première étape : type de fonctionnement (air brassé, ou pas), réglage de la température ?

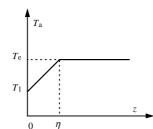
FIN DU PROBLÈME FIN DE L'ÉPREUVE

Note: Les considérations faisant l'objet de ce problème, ainsi que beaucoup d'autres, ont été vérifiées expérimentalement, notamment par Kurti et This, lors du premier colloque international de gastronomie moléculaire et physique, à Erice (Sicile), en 1992.

Quelques notations utilisées dans ce problème

- c capacité thermique massique du matériau de la plaque
- capacité thermique massique volumique de l'air au-dessus de la plaque
- λ conductivité thermique du matériau de la plaque λ
- d épaisseur de plaque
- $\mathbf{J}_{\mathbf{Q}}(\Pi_1)$ flux surfacique de puissance à travers Π_1
- $J_0(\Pi_2)$ flux surfacique de puissance à travers Π_2
- L distance entre le plan Π_1 et la paroi supérieure du four.
- T température de la plaque à la date t
- T_1 température de la plaque à la surface Π_1 .
- T_a température de l'air en régime stationnaire
- T_e température des parois du four
- $T_{\rm i}$ température initiale de la plaque
- $T_{\rm p}$ température de la plaque en régime stationnaire
- $V_{\rm a}$ volume de l'air au-dessus de la plaque
- ρ masse volumique du matériau de la plaque
- $\theta = T T_e$

 η



 λ_a la plaque

conductivité thermique de l'air au-dessus de

 $ho_{\rm a}$ masse volumique de l'air au-dessus de la plaque sa capacité thermique massique